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Time Abstraction

Reachability

The state space of timed automata are uncountably infinite
(because of real valued clocks).

How can we compute if a state is reachable?

q0 q1 q2 q3
a; x := 0

x ≥ 2; b

b; x := 0

x ≤ 1; a

Key Idea

We will group clock values into equivalence classes to make a finite
abstraction of the timed automata which preserves reachability.

Instead of specific amounts of time passing, we will add a generic
“time passing” action called δ to our abstraction.
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Time Abstraction

Time Abstraction

Ignoring the specific time elapsed and instead just using δ is called
time abstraction.

Equivalences

Our normal notions of bisimulation and trace equivalence apply
also to timed automata. For example, two timed automata are
timed trace equivalent iff they accept the same timed language.

Two automata are time-abstract equivalent iff they appear
equivalent after applying time abstraction.

Timed equivalence is finer than time-abstract equivalence, but
time-abstract systems are more tractable.
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Time Abstraction

Regions
Regions

Our clock valuations are grouped into regions. Regions should:

1 Satisfy the same clock constraints.

2 Reach the same regions from time passing (called the
successor regions).

Recall our definition of clock constraints:

ϕ ::= x ∼ k | x − y ∼ k | ϕ1 ∧ ϕ2

where x , y ∈ X and k ∈ Z and (∼) ∈ {<,≤,=,≥, >}
The smallest regions these constraints can distinguish (in 2D):

1 Integer Points: x = 0 ∧ y = 0? Yep!
2 Open Intervals: x = 0 ∧ 2 < y < 3? Yep!
3 Open Squares: 0 < x < 1 ∧ 1 < y < 2? No! We can go finer!
4 Diagonals: x − y = 1 ∧ 1 < x < 2? Yep!
5 Open Triangles: x − y < 2 ∧ 3 < x < 4? Yep!
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Time Abstraction

A finite bound

Depending on the specific constraints involved, we can sometimes
merge regions where the difference between them is not important.

Maximal Constant

The maximal constant K of a system is the highest integer
constant that occurs in the set of all clock constraints.
Regions dealing with clock values between K and ∞ can always be
merged.

The maximal constant merging gives us a finite bound on the
number of regions: O(|X |! · K |X |)

19



Time Abstraction

A finite bound

Depending on the specific constraints involved, we can sometimes
merge regions where the difference between them is not important.

Maximal Constant

The maximal constant K of a system is the highest integer
constant that occurs in the set of all clock constraints.
Regions dealing with clock values between K and ∞ can always be
merged.

The maximal constant merging gives us a finite bound on the
number of regions: O(|X |! · K |X |)

20



Time Abstraction

A finite bound

Depending on the specific constraints involved, we can sometimes
merge regions where the difference between them is not important.

Maximal Constant

The maximal constant K of a system is the highest integer
constant that occurs in the set of all clock constraints.
Regions dealing with clock values between K and ∞ can always be
merged.

The maximal constant merging gives us a finite bound on the
number of regions: O(|X |! · K |X |)

21



Time Abstraction

Region Graph Definition

Region Graph

The region graph of a TA A = (L, `0,Act,X , Inv,−→) is the
automaton (L× Regions(A), (`0, 0),Act ∪ {δ},=⇒) where:

Regions(A) is the set of all regions.

0 is the region where all clock values are zero.

For a ∈ Act, (`,R)
a

==⇒ (`′,R ′) if

There is an edge `
g ;a;r−−−→ `′,

R implies g
R ′ = r(R)

(`,R)
δ

==⇒ (`′,R ′) if

R ′ is a successor of R
R implies Inv(`) and R ′ implies Inv(`′)

For any open region R we also have (`,R)
δ

==⇒ (`,R).
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Time Abstraction

Tiny Example

Let’s try a simple region graph following the formal definition for
this one-dimensional, one state TA:

q0

x ≥ 2; a; x := 0
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Time Abstraction

Key Properties

The big win

A location is reachable in the region graph of a timed automaton
A iff it is reachable in A.

As the region graph is just a normal finite automaton, reachability
is decidable for TA, although PSPACE-complete.

27



Time Abstraction

Key Properties

The big win

A location is reachable in the region graph of a timed automaton
A iff it is reachable in A.

As the region graph is just a normal finite automaton, reachability
is decidable for TA, although PSPACE-complete.

28


	Time Abstraction

