

Timed Reachability and Abstraction

Dr. Liam O'Connor CSE, UNSW (and LFCS, University of Edinburgh) Term 1 2020

Reachability

The state space of timed automata are uncountably infinite (because of real valued clocks).

Reachability

The state space of timed automata are uncountably infinite (because of real valued clocks). How can we compute if a state is reachable?

Reachability

The state space of timed automata are uncountably infinite (because of real valued clocks).

How can we compute if a state is reachable?

Reachability

The state space of timed automata are uncountably infinite (because of real valued clocks).

How can we compute if a state is reachable?

Key Idea

We will group clock values into equivalence classes to make a finite abstraction of the timed automata which preserves reachability.

Reachability

The state space of timed automata are uncountably infinite (because of real valued clocks).

How can we compute if a state is reachable?

Key Idea

We will group clock values into equivalence classes to make a finite abstraction of the timed automata which preserves reachability.

Instead of specific amounts of time passing, we will add a generic "time passing" action called δ to our abstraction.

Time Abstraction ○●○○○○○

Time Abstraction

Ignoring the specific time elapsed and instead just using δ is called time abstraction.

Time Abstraction

Ignoring the specific time elapsed and instead just using δ is called *time abstraction*.

Equivalences

Our normal notions of bisimulation and trace equivalence apply also to timed automata. For example, two timed automata are *timed trace equivalent* iff they accept the same timed language.

Two automata are *time-abstract equivalent* iff they appear equivalent after applying time abstraction.

Time Abstraction

Ignoring the specific time elapsed and instead just using δ is called *time abstraction*.

Equivalences

Our normal notions of bisimulation and trace equivalence apply also to timed automata. For example, two timed automata are *timed trace equivalent* iff they accept the same timed language.

Two automata are *time-abstract equivalent* iff they appear equivalent after applying time abstraction.

Timed equivalence is *finer* than time-abstract equivalence, but time-abstract systems are more tractable.

Regions

Regions

Our clock valuations are grouped into regions. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Regions

Our clock valuations are grouped into regions. Regions should:

Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

where $x,y\in X$ and $k\in \mathbb{Z}$ and $(\sim)\in\{<,\leq,=,\geq,>\}$

Regions

Our clock valuations are grouped into *regions*. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

Regions

Our clock valuations are grouped into *regions*. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

- **1** Integer Points: $x = 0 \land y = 0$? **Yep!**
- **2** Open Intervals: $x = 0 \land 2 < y < 3$? **Yep!**

Regions

Our clock valuations are grouped into regions. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

- **1** Integer Points: $x = 0 \land y = 0$? **Yep!**
- **2** Open Intervals: $x = 0 \land 2 < y < 3$? **Yep!**
- **③** Open Squares: 0 < x < 1 ∧ 1 < y < 2?

Regions

Our clock valuations are grouped into *regions*. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

- **1** Integer Points: $x = 0 \land y = 0$? **Yep!**
- ② Open Intervals: $x = 0 \land 2 < y < 3$? Yep!
- **(**) Open Squares: $0 < x < 1 \land 1 < y < 2$? **No!** We can go finer!

Regions

Our clock valuations are grouped into *regions*. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

- **1** Integer Points: $x = 0 \land y = 0$? **Yep!**
- ② Open Intervals: $x = 0 \land 2 < y < 3$? Yep!
- **Open Squares:** $0 < x < 1 \land 1 < y < 2$? **No!** We can go finer!
- **O** Diagonals: $x y = 1 \land 1 < x < 2$?

Regions

Our clock valuations are grouped into *regions*. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

- **1** Integer Points: $x = 0 \land y = 0$? **Yep!**
- ② Open Intervals: $x = 0 \land 2 < y < 3$? Yep!
- **Open Squares:** $0 < x < 1 \land 1 < y < 2$? **No!** We can go finer!
- **O** Diagonals: $x y = 1 \land 1 < x < 2$? **Yep!**
- **(**) Open Triangles: $x y < 2 \land 3 < x < 4$?

Regions

Our clock valuations are grouped into *regions*. Regions should:

- Satisfy the same clock constraints.
- Reach the same regions from time passing (called the successor regions).

Recall our definition of clock constraints:

$$\varphi ::= x \sim k \mid x - y \sim k \mid \varphi_1 \land \varphi_2$$

- **1** Integer Points: $x = 0 \land y = 0$? **Yep!**
- ② Open Intervals: $x = 0 \land 2 < y < 3$? Yep!
- **Open Squares:** $0 < x < 1 \land 1 < y < 2$? **No!** We can go finer!
- **④** Diagonals: $x y = 1 \land 1 < x < 2$? **Yep!**
- **(**) Open Triangles: $x y < 2 \land 3 < x < 4$? **Yep!**

A finite bound

Depending on the specific constraints involved, we can sometimes merge regions where the difference between them is not important.

A finite bound

Depending on the specific constraints involved, we can sometimes merge regions where the difference between them is not important.

Maximal Constant

The maximal constant K of a system is the highest integer constant that occurs in the set of all clock constraints. Regions dealing with clock values between K and ∞ can always be merged.

A finite bound

Depending on the specific constraints involved, we can sometimes merge regions where the difference between them is not important.

Maximal Constant

The maximal constant K of a system is the highest integer constant that occurs in the set of all clock constraints. Regions dealing with clock values between K and ∞ can always be merged.

The maximal constant merging gives us a finite bound on the number of regions: $\mathcal{O}(|X|! \cdot K^{|X|})$

Region Graph Definition

Region Graph

The region graph of a TA $\mathcal{A} = (L, \ell_0, \operatorname{Act}, X, \operatorname{Inv}, \longrightarrow)$ is the automaton $(L \times \operatorname{Regions}(\mathcal{A}), (\ell_0, \overline{0}), \operatorname{Act} \cup \{\delta\}, \Longrightarrow)$ where:

- $\bullet \mbox{ Regions}(\mathcal{A})$ is the set of all regions.
- $\overline{0}$ is the region where all clock values are zero.

Region Graph Definition

Region Graph

The region graph of a TA $\mathcal{A} = (L, \ell_0, \operatorname{Act}, X, \operatorname{Inv}, \longrightarrow)$ is the automaton $(L \times \operatorname{Regions}(\mathcal{A}), (\ell_0, \overline{0}), \operatorname{Act} \cup \{\delta\}, \Longrightarrow)$ where:

- $\bullet \mbox{ Regions}(\mathcal{A})$ is the set of all regions.
- $\overline{0}$ is the region where all clock values are zero.

• For
$$a \in \operatorname{Act}, (\ell, R) \stackrel{a}{\Longrightarrow} (\ell', R')$$
 if

• There is an edge
$$\ell \xrightarrow{g;a;r} \ell'$$
,

• R implies g

•
$$R' = r(R)$$

Region Graph Definition

Region Graph

The region graph of a TA $\mathcal{A} = (L, \ell_0, \operatorname{Act}, X, \operatorname{Inv}, \longrightarrow)$ is the automaton $(L \times \operatorname{Regions}(\mathcal{A}), (\ell_0, \overline{0}), \operatorname{Act} \cup \{\delta\}, \Longrightarrow)$ where:

- $\operatorname{Regions}(\mathcal{A})$ is the set of all regions.
- $\overline{0}$ is the region where all clock values are zero.
- For $a \in \operatorname{Act}, (\ell, R) \stackrel{a}{\Longrightarrow} (\ell', R')$ if
 - There is an edge $\ell \xrightarrow{g;a;r} \ell'$,
 - R implies g

•
$$R' = r(R)$$

•
$$(\ell, R) \stackrel{\delta}{\Longrightarrow} (\ell', R')$$
 if

- R' is a successor of R
- R implies $Inv(\ell)$ and R' implies $Inv(\ell')$

Region Graph Definition

Region Graph

The region graph of a TA $\mathcal{A} = (L, \ell_0, \operatorname{Act}, X, \operatorname{Inv}, \longrightarrow)$ is the automaton $(L \times \operatorname{Regions}(\mathcal{A}), (\ell_0, \overline{0}), \operatorname{Act} \cup \{\delta\}, \Longrightarrow)$ where:

- $\operatorname{Regions}(\mathcal{A})$ is the set of all regions.
- $\overline{0}$ is the region where all clock values are zero.
- For $a \in \operatorname{Act}, (\ell, R) \stackrel{a}{\Longrightarrow} (\ell', R')$ if
 - There is an edge $\ell \xrightarrow{g;a;r} \ell'$,
 - R implies g

•
$$R' = r(R)$$

•
$$(\ell, R) \stackrel{\delta}{\Longrightarrow} (\ell', R')$$
 if

- R' is a successor of R
- R implies $Inv(\ell)$ and R' implies $Inv(\ell')$

• For any open region R we also have $(\ell, R) \stackrel{\delta}{\Longrightarrow} (\ell, R)$.

Tiny Example

Let's try a simple region graph following the formal definition for this one-dimensional, one state TA:

Key Properties

The big win

A location is reachable in the region graph of a timed automaton A iff it is reachable in A.

Key Properties

The big win

A location is reachable in the region graph of a timed automaton A iff it is reachable in A.

As the region graph is just a normal finite automaton, reachability is decidable for TA, although PSPACE-complete.